Asymmetric superoxide release inside and outside the mitochondria in skeletal muscle under conditions of aging and disuse.

نویسندگان

  • Xin Xu
  • Chiao-nan Joyce Chen
  • Edgar A Arriaga
  • LaDora V Thompson
چکیده

Superoxide released from mitochondria forms reactive oxygen species that can cause severe oxidative damage and have been associated with aging- and disuse-induced muscle dysfunction. Superoxide is released to both the exterior and the matrix of mitochondria, where oxidative damage is not necessarily the same. This complicates determining the role of mitochondrial superoxide in eliciting oxidative stress in skeletal muscle. A newly developed capillary electrophoretic method analyzes hydroxytriphenylphosphonium ethidium, a superoxide-specific product of triphenylphosphonium hydroethidine, released to outside the mitochondria (supernatant) and retained in the matrix (pellet). In this study, we investigated the mitochondrial superoxide production of soleus (type I) and semimembranosus (type II) muscles of Fischer 344 rats affected by aging (13 vs. 26 mo) and disuse (hindlimb unloading). In agreement with previous studies, overall superoxide production increased with aging and disuse. On the other hand, the new experimental method revealed that superoxide production outside the mitochondria of the soleus does not show a significant age-related increase. Another observation was that the superoxide production increase in the matrix occurs earlier (7 days of disuse) compared with the outside mitochondria (14 days of disuse) in both muscle types. These findings indicate that superoxide release is complex as it occurs asymmetrically at both sides of the mitochondrial inner membrane, and that such release has muscle type and temporal specificity. These findings are important to refine current concepts on oxidative stress associated with muscle aging and disuse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of Apoptosis in Skeletal Muscle

Apoptosis is an important regulatory process that occurs during normal development and in the progression of specific diseases. Apoptosis can be induced by two alternative signaling routes: 1) external factors binding to membrane death receptors outside the cell, and 2) internal cellular events leading to the release of specific cell death molecules from mitochondria. Regardless of the mode of ...

متن کامل

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men.

Previous studies have shown that skeletal muscle glycogen and mitochondria are distributed in distinct subcellular localizations, but the role and regulation of these subcellular localizations are unclear. In the present study, we used transmission electron microscopy to investigate the effect of disuse and aging on human skeletal muscle glycogen and mitochondria content in subsarcolemmal (SS),...

متن کامل

The role of mitochondrial fusion and fission in skeletal muscle function and dysfunction.

Classic textbook depictions of mitochondria portray these organelles to be static bean-shaped structures. However the mitochondrial population is quite heterogeneous, and can form small individual organelles or extended reticula throughout muscle. This morphological plasticity is controlled by fission and opposing fusion events. Skeletal muscle mitochondrial morphology has been demonstrated to ...

متن کامل

Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy.

Muscle loss during aging and disuse is a highly prevalent and disabling condition, but knowledge about cellular pathways mediating muscle atrophy is still limited. Given the postmitotic nature of skeletal myocytes, the maintenance of cellular homeostasis relies on the efficiency of cellular quality control mechanisms. In this scenario, alterations in mitochondrial function are considered a majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 109 4  شماره 

صفحات  -

تاریخ انتشار 2010